Hardy-Littlewood Maximal Function and class (Ap , Ap)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector A2 Weights and a Hardy-littlewood Maximal Function

An analogue of the Hardy-Littlewood maximal function is introduced, for functions taking values in finite-dimensional Hilbert spaces. It is shown to be L bounded with respect to weights in the class A2 of Treil, thereby extending a theorem of Muckenhoupt from the scalar to the vector case. A basic chapter of the subject of singular integral operators is the weighted norm theory, which provides ...

متن کامل

On the Variation of the Hardy–littlewood Maximal Function

We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.

متن کامل

A Sharp Estimate for the Hardy-littlewood Maximal Function

The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ

متن کامل

MATRIX Ap WEIGHTS VIA MAXIMAL FUNCTIONS

Weighted Norm theory forms a basic component of the study of singular integrals. Here one attempts to characterize those measure spaces over which a broad class of singular integral operators remain bounded. For the case of singular integral operators on C-valued functions in Euclidean space, the answer is given by the Hunt-Muckenhoupt-Wheeden theorem [10]. It states that the necessary and suff...

متن کامل

On the Lp boundedness of the non-centered Gaussian Hardy-Littlewood Maximal Function

The purpose of this paper is to prove the L p (R n ; dd) boundedness, for p > 1, of the non-centered Hardy-Littlewood maximal operator associated with the Gaussian measure dd = e ?jxj 2 dx. Let dd = e ?jxj 2 dx be a Gaussian measure in Euclidean space R n. We consider the non-centered maximal function deened by Mf(x) = sup x2B 1 (B) Z B jfj dd; where the supremum is taken over all balls B in R ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Science and Engineering

سال: 2017

ISSN: 2645-8519,2091-1475

DOI: 10.3126/jsce.v4i0.22375