Hardy-Littlewood Maximal Function and class (Ap , Ap)
نویسندگان
چکیده
منابع مشابه
Vector A2 Weights and a Hardy-littlewood Maximal Function
An analogue of the Hardy-Littlewood maximal function is introduced, for functions taking values in finite-dimensional Hilbert spaces. It is shown to be L bounded with respect to weights in the class A2 of Treil, thereby extending a theorem of Muckenhoupt from the scalar to the vector case. A basic chapter of the subject of singular integral operators is the weighted norm theory, which provides ...
متن کاملOn the Variation of the Hardy–littlewood Maximal Function
We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.
متن کاملA Sharp Estimate for the Hardy-littlewood Maximal Function
The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ
متن کاملMATRIX Ap WEIGHTS VIA MAXIMAL FUNCTIONS
Weighted Norm theory forms a basic component of the study of singular integrals. Here one attempts to characterize those measure spaces over which a broad class of singular integral operators remain bounded. For the case of singular integral operators on C-valued functions in Euclidean space, the answer is given by the Hunt-Muckenhoupt-Wheeden theorem [10]. It states that the necessary and suff...
متن کاملOn the Lp boundedness of the non-centered Gaussian Hardy-Littlewood Maximal Function
The purpose of this paper is to prove the L p (R n ; dd) boundedness, for p > 1, of the non-centered Hardy-Littlewood maximal operator associated with the Gaussian measure dd = e ?jxj 2 dx. Let dd = e ?jxj 2 dx be a Gaussian measure in Euclidean space R n. We consider the non-centered maximal function deened by Mf(x) = sup x2B 1 (B) Z B jfj dd; where the supremum is taken over all balls B in R ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Science and Engineering
سال: 2017
ISSN: 2645-8519,2091-1475
DOI: 10.3126/jsce.v4i0.22375